0=2(x^2+7x-44)

Simple and best practice solution for 0=2(x^2+7x-44) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=2(x^2+7x-44) equation:



0=2(x^2+7x-44)
We move all terms to the left:
0-(2(x^2+7x-44))=0
We add all the numbers together, and all the variables
-(2(x^2+7x-44))=0
We calculate terms in parentheses: -(2(x^2+7x-44)), so:
2(x^2+7x-44)
We multiply parentheses
2x^2+14x-88
Back to the equation:
-(2x^2+14x-88)
We get rid of parentheses
-2x^2-14x+88=0
a = -2; b = -14; c = +88;
Δ = b2-4ac
Δ = -142-4·(-2)·88
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{900}=30$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-30}{2*-2}=\frac{-16}{-4} =+4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+30}{2*-2}=\frac{44}{-4} =-11 $

See similar equations:

| 8n^2+4n+12=8 | | E=3a+3-2a²+2a | | (2/3)x-3=11 | | 2/x=15/7 | | n/2(2(40000)+(n-1)(3500))=n(2(10000)+(n-1)(2000)) | | 2/5j=4 | | 9x+x2=0 | | 5x–2=7x+16 | | 27=3c+-3(6+-20) | | 3+5(z+5)=31 | | 2u+4/3=8u-8/5+2 | | 23=-4m+2+2 | | 7^2x+1=5 | | 3x+68/8=x+6 | | 4x×5=12+4 | | 1/3x^2+x-1/2=0 | | 1/5x-20+1=-8/x-4 | | 3x+3x+3x=0 | | 4-(2x+5)=1/2(-4x-2) | | X2+17x+1=0 | | 1/2x+4=2x-5 | | (2x)3=4 | | (x+2)(x+1)=(x+4)(x+5) | | 3x–(x–3)=6+2x–5x | | 5(x-1)=5x+2 | | (5x+6)(7x+8)=0 | | x/7=7/(x+7) | | 5(x-4)=-x+8 | | x+1/2-3x=3 | | 3x+12+2=2+5x-20 | | 15+(x/2)=23 | | 2b-7/3=8 |

Equations solver categories